robotic_sdk.ml_models package
Subpackages
- robotic_sdk.ml_models.free_spot_2d package
- robotic_sdk.ml_models.grasp package
- Submodules
- robotic_sdk.ml_models.grasp.collinear_point module
- robotic_sdk.ml_models.grasp.debug_logger module
- robotic_sdk.ml_models.grasp.detection module
- robotic_sdk.ml_models.grasp.geom_utils module
- robotic_sdk.ml_models.grasp.grasp module
- robotic_sdk.ml_models.grasp.grasp_2f module
- robotic_sdk.ml_models.grasp.grasp_pose module
- robotic_sdk.ml_models.grasp.msg_utils module
- robotic_sdk.ml_models.grasp.pick_point module
- robotic_sdk.ml_models.grasp.projection_logger module
- robotic_sdk.ml_models.grasp.segmentation module
- robotic_sdk.ml_models.grasp.segmentation_logger module
- robotic_sdk.ml_models.grasp.smooth_point module
- robotic_sdk.ml_models.grasp.top_line_point module
- Module contents
- robotic_sdk.ml_models.grounded_sam_2 package
Submodules
robotic_sdk.ml_models.anomaly_detection module
- class robotic_sdk.ml_models.anomaly_detection.AnomalyDetectionModel(model_name: str, parameters: dict)
Bases:
Model
A class representing the anomaly detection model.
- __init__(model_name: str, parameters: dict)
Initializes the AnomalyDetectionModel.
- Parameters:
model_name (str) – The name of the model.
parameters (dict) – A dictionary of parameters for the model.
- load_model(model_path: str)
Load the model from the specified path.
- Parameters:
model_path (str) – The path to the model file.
- Returns:
The instance of the model.
- Return type:
self
- perform_inference(data_x)
Perform inference using the model.
- Parameters:
data_x – The data to perform inference on.
- Returns:
The result of the inference.
- save_model(model_path: str)
Save the model at the specified path.
- Parameters:
model_path (str) – The path to save the model file.
- Returns:
The instance of the model.
- Return type:
self
- train_model(data_x) None
Train the model with the provided data.
- Parameters:
data_x – The training data.
robotic_sdk.ml_models.gpt module
robotic_sdk.ml_models.grounded_segmentation module
robotic_sdk.ml_models.metrics module
- robotic_sdk.ml_models.metrics.calculate_iou(detections: list, ground_truth_mask: ndarray)
Calculate the Intersection over Union (IoU) score for a list of detections against a ground truth mask.
- Parameters:
detections (list) – A list of detection objects, where each object contains a mask attribute. The mask attribute is assumed to be a binary 2D numpy array representing the detected area.
ground_truth_mask (np.ndarray) – A binary 2D numpy array representing the ground truth area for comparison.
- Returns:
The average IoU score for all detections.
- Return type:
float
robotic_sdk.ml_models.model module
- class robotic_sdk.ml_models.model.Model(model_name: str, parameters: dict | None = None)
Bases:
ABC
Abstract base class for all models.
- __init__(model_name: str, parameters: dict | None = None)
Initializes the Model instance.
- Parameters:
model_name (str) – The name of the model.
parameters (dict) – The hyperparameters for the model.
- Raises:
ValueError – If the configuration is not set before creating any model instances.
- abstract load_model(model_path: str) None
Loads the model from the given path.
- Parameters:
model_path (str) – The path to the model file.
- Returns:
None
- abstract perform_inference(**kwargs)
Abstract method to perform inference.
- Parameters:
**kwargs – Arbitrary keyword arguments.
- Returns:
None
- abstract save_model(model_path: str) None
Abstract method to save the model at the given path.
- Parameters:
model_path (str) – The path to save the model file.
- Returns:
None
- abstract train_model() None
Abstract method to train the model.
- Returns:
None